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Abstract
This paper considers the onset of a shear-induced instability in a sample of smectic A liquid
crystal. Unlike many previous models, the usual director n need not necessarily coincide with
the local smectic layer normal a; the traditional Oseen constraint (∇ × a = 0) is not imposed
when flow is present. A recent dynamic theory for smectic A (Stewart 2007 Contin. Mech.
Thermodyn. 18 343–60) will be used to examine a stationary instability in a simple model when
the director reorientation and smectic layer distortions are, firstly, assumed not to be coupled to
the velocity and, secondly, are supposed coupled to the velocity. A critical shear rate at which
the onset of the instability occurs will be identified, together with an accompanying critical
director tilt angle and critical wavenumber for the associated smectic layer undulations. Despite
some critical phenomena being largely unaffected by any coupling to the flow, it will be shown
that the influence of some material parameters, especially the smectic layer compression
constant B0 and the coupling constant B1, upon the critical shear rate and critical tilt angle can
be greatly affected by flow.

1. Introduction

Liquid crystals are anisotropic fluids that consist of elongated
rod-like molecules which have a preferred local average
orientation described by the unit vector n, commonly called
the director. In the smectic A (SmA) liquid crystal phase the
molecules are arranged in equidistant layers where, in general,
the director is often parallel to the local smectic layer normal,
denoted by the unit vector a, as shown in figure 1(a). It is
well known that the orientations of n and a can be affected by
an imposed shear flow, boundary conditions or an externally
applied electric or magnetic field. This paper will deal with the
analysis of a simple shear applied to a planar aligned sample
of SmA. At a critical shear rate the director and the smectic
layers will adjust their alignment through undulations of the
layers and realignment of the director relative to the layers.
This critical shear rate turns out to be directly related to the
critical angle, measured relative to the initial unperturbed layer
normal direction, at which the director will tilt at the onset of
a shear-induced flow instability. The main aim is to identify
the critical share rate, kc, the critical director tilt angle, θc,
and the accompanying critical wavenumber, qc, that signals
the presence of the undulations in the smectic layers. The
critical wavevector for these undulations is perpendicular to
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the direction of the applied shear, in accordance with related
experimental and theoretical results that are mentioned below.
More general details on the physics and mathematical models
of liquid crystals can be found in the books by de Gennes and
Prost [1] and Stewart [2].

In the classical models for SmA, the director n and smectic
layer normal a coincide [1, 2]. However, the investigations
by Ribotta and Durand [3], Oswald and Ben-Abraham [4]
and, more recently, Auernhammer et al [5–7], Soddemann
et al [8] and Stewart et al [9–11] have indicated a need for
a model that allows n and a to separate if required. The
possibility of introducing such a separation has been discussed
by these authors and a nonlinear continuum theory that takes
this separation into account for the dynamics of SmA has been
formulated by Stewart [12]. It is this continuum theory that
will be employed here while the approach we adopt will follow
that of Auernhammer et al [6]. We consider a simple shear
imposed upon an initially planar aligned sample of SmA as
shown in figure 1(b), which is motivated by the work in [4–6].
The results in [6], achieved using an alternative mathematical
framework, can be compared qualitatively with those that will
be featured here. It will be seen that, for the ‘minimal’ set of
variables case discussed below when it is supposed that there
is no coupling to the velocity field, the linear equations used
in [6] coincide with those obtained here, as may be expected
when a basic viscous stress is considered and the linearized
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Figure 1. (a) A planar aligned sample of undistorted SmA liquid
crystal. The short bold lines, which represent the director, are
representative of the rod-like molecular structures within the layers.
In this case the director n coincides with the layer normal a.
(b) Subject to horizontal shear, the layers begin to distort and n and a
need no longer coincide. The director is initially expected to tilt in
the direction of flow while the wavevector, which is indicative of
layer undulations, is parallel to the y axis. The angle θ measures the
director tilt from the z axis and φ is the orientation angle of the
orthogonal projection of n onto the smectic layers in the xy plane.

equations from the models are used. Nevertheless, when a
full set of variables is used that couples to the velocity field,
the linearized equations give some differing qualitative results
due to the more extensive viscous stress terms that have been
introduced in [12]. A comparison will be made between the
solutions for critical parameters obtained from the minimal and
full sets of variables. Some qualitative features will turn out to
be modelled adequately by adopting the reduced minimal set
of variables and this will be indicative of when a simplified
set of model equations may be sufficient. On the other hand,
there will be instances when the full influence of flow cannot
be neglected because the results differ dramatically. In this
case coupling to the flow profile cannot be ignored and a more
complex set of model equations are required.

The dynamic theory for SmA will be summarized in
section 2.1 and the mathematical model of the geometric
set-up for a simple shear will be introduced in section 2.2.
A spatially homogeneous state, previously identified in [6],
will be presented briefly in section 2.3. This homogeneous
state is important because it relates the shear rate to the
director tilt angle. Section 3 considers small disturbances
to the spatially homogeneous state and presents the main
governing perturbation equations in two cases: the first ignores
any coupling of the disturbances to the flow and the second
includes the possibility of such coupling. Section 4 discusses
the numerical results via various graphs for the identification of
the critical parameters kc, θc and qc at the onset of an instability

to the spatially homogeneous state. Comparisons will made
between the results for the two sets of solutions and differences
will be highlighted that will indicate when coupling to the flow
may or may not be neglected for various ranges of material
parameters. The paper closes in section 5 with a discussion of
the results.

2. Dynamic equations and geometrical set-up

The SmA dynamic theory of Stewart [12], which allows n
and a to separate, will be introduced in section 2.1 before
going on to discuss the geometrical set-up and particular model
equations in section 2.2.

2.1. Dynamic theory

The dynamic theory formulated in [12] will now be
summarized. Cartesian tensor notation and the summation
convention will be used, where any index that is repeated
precisely twice in an expression is summed from 1 to 3. Partial
differentiation with respect to the variable x j is denoted by a
subscript j preceded by a comma. For example, ai, j denotes
the partial derivative of the i th component of a with respect to
the j th spatial coordinate and ai,i represents the divergence of
a. The layer normal a is given by

ai = �,i

|∇�| , ai ai = 1, (2.1)

where the smectic layers are modelled by the layer function �.
The usual Oseen [13] constraint, ∇ × a = 0, a condition that
is widely accepted for modelling the equilibrium structures of
layered smectic phases in the absence of dislocations, will not
be imposed as a modelling requirement for the dynamics: small
distortions to the lamellar-like layer structure of SmA generally
violate the Oseen constraint. The director must satisfy the
constraint

ni ni = 1. (2.2)

The incompressibility condition is given by

vi,i = 0, (2.3)

where v is the velocity. The rate of strain tensor A and vorticity
tensor W are second-order tensors defined in the usual way by

Ai j = 1
2 (vi, j + v j,i), Wi j = 1

2 (vi, j − v j,i), (2.4)

and, following the standard procedure for nematics, the co-
rotational time flux N of the director n is introduced as

N = ṅ − Wn. (2.5)

The equations that arise from the balance law for linear
momentum are

ρv̇i = ρFi − p̃,i + g̃ jn j,i +G j n j,i +|∇�|ai J j, j + t̃i j, j, (2.6)

where ρ is the density, Fi is the external body force per unit
mass, Gi is the generalized external body force that can be
related to the external body moment per unit mass, p̃ = p+wA
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where p is the pressure and wA is the energy density, and J is
defined by

Ji = − ∂wA

∂ �,i
+ 1

|∇�|
[(

∂wA

∂ap,k

)
,k

− ∂wA

∂ap

]
(δpi −apai). (2.7)

A superposed dot represents the usual material time derivative
given by

D

Dt
= ∂

∂ t
+ vi

∂

∂xi
. (2.8)

We remark here that J, sometimes called a ‘phase flux’ term,
is a natural nonlinear extension to the versions discussed by
Auernhammer et al [5, 6], E [14] and de Gennes and Prost [1]:
when it is suitably linearized for small changes in the layer
and director orientations then it reduces to the expressions
discussed in [5, 6] when n and a are allowed to separate and
further reduces to the classical results in [1, 14] when n ≡ a.
The constitutive equations for the viscous stress t̃i j and g̃i are
given by, respectively,

t̃i j = α1(nk Akpn p)ni n j + α2 Ni n j + α3ni N j + α4 Ai j

+ α5(n j Aipn p + ni A j pn p) + (α2 + α3)ni A j pn p

+ τ1(ak Akpap)ai a j + τ2(ai A j pap + a j Aipap)

+ κ1(ai N j + a j Ni + ni A j pap − n j Aipap)

+ κ2(nk Akpap)(ni a j + ai n j)

+ κ3[(nk Akpn p)ai a j + (ak Akpap)ni n j ]
+ κ4[2(nk Akpap)ni n j + (nk Akpn p)(ai n j + ni a j)]
+ κ5[2(nk Akpap)ai a j + (ak Akpap)(ni a j + ai n j)]
+ κ6(n j Aipap + ni A j pap + ai A j pn p + a j Aipn p), (2.9)

and
g̃i = −γ1 Ni − γ2 Aipn p − 2κ1 Aipap, (2.10)

where

γ1 = α3 − α2 and γ2 = α2 + α3. (2.11)

In the above expressions, α1 to α5, τ1, τ2 and κ1 to κ6 are
dynamic viscosity coefficients. The viscosities α1 to α5 are
nematic-like, while the three particular viscosities α4, τ1 and τ2

are analogous to the usual incompressible SmA viscosities [14,
equation (3.33)]; κ1 to κ6 are ‘coupling’ viscosities that reflect
the combined effects of nematic and SmA behaviour. We
remark here that Sukumaran and Ranganath [15] also have
an expression for an analogous g̃i contribution for smectic C
(SmC) liquid crystals that contains three viscosity coefficients
similar in style to that stated in (2.10) and that a more extensive
theory for SmC [16] has similar contributions.

The balance of angular momentum leads to the equations
(

∂wA

∂ni, j

)
, j

− ∂wA

∂ni
+ g̃i + Gi = μni , (2.12)

where the scalar function μ is a Lagrange multiplier that
arises from the constraint (2.2) and can usually be eliminated
from these equations or evaluated by taking the scalar product
of (2.12) with n. The permeation equation is

�̇ = −λp Ji,i , (2.13)

where λp � 0 is the permeation coefficient, which relates
the layer flux through a stationary medium to the relevant
thermodynamic force [1, 17]. In locally planar smectic
systems, permeation can be thought of as a weak flow of
material through the smectic layers in the direction of the local
layer normal [18]. It was first introduced by Helfrich [19].
Equations (2.2), (2.3), (2.6), (2.12) and (2.13) provide nine
equations in the nine unknowns �, ni , vi , p and μ; the smectic
layer normal a is, of course, determined by (2.1) from the
solution for �.

One elementary possibility for an energy density may be
based upon those used by Ribotta and Durand [3], E [14],
Auernhammer et al [5, 6] and Soddemann et al [8]. It is given
by [12]

wA = 1
2 K n

1 (∇ · n)2 + 1
2 K a

1 (∇ · a)2

+ 1
2 B0( |∇�| + n · a − 2)2 + 1

2 B1
{
1 − (n · a)2

}
. (2.14)

This energy density is invariant under the simultaneous
changes in sign n → −n and a → −a, which is equivalent
to invariance under the simultaneous changes n → −n and
∇� → −∇�. The first term on the right-hand side of (2.14)
represents the usual elastic splay deformation of the director
n while the second term is a measure of the bending of the
smectic layers; both K n

1 and K a
1 are positive elastic constants.

The third term represents smectic layer compression and is
an extended version of that which is known for SmA, based
upon the results in [1, 6, 14]; the positive constant B0 is
the layer compression constant. The fourth expression is a
measure of the strength of the coupling between n and a with
the positive constant B1 having dimensions of energy per unit
volume: in an equilibrium state this energy contribution is
clearly minimized when n and a are parallel. Since n and a are
unit vectors, this term can equally be written as 1

2 B1(n × a)2,
which is the form used in [5, 6, 8].

2.2. Geometrical set-up and approximations

We consider a homeotropically aligned sample of SmA
liquid crystal subjected to a simple shear flow as shown in
figure 1. It will be assumed that any undulations will be
independent of x for small disturbances, in accord with the
experimental interpretations of Oswald and Ben-Abraham [4]
and the theoretical framework of Auernhammer et al [5, 6] and
Soddemann et al [8]: there will be a wavevector along the y
direction while the basic shear velocity will be along the x
direction for a shear-induced flow imposed upon the layers as
indicated in figure 1(b). The general form for the layer function
� may then be written as

� = z − u(y, z, t), (2.15)

where u is the smectic layer displacement.
It is generally possible to set

n = (sin θ cosφ, sin θ sinφ, cosθ), (2.16)

a = ∇�

|∇�| , (2.17)

3
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where θ(y, z, t) is the angle between n and the z axis and
φ(y, z, t) is the angle measured relative to the x axis that is
made by the orthogonal projection of n onto the xy plane.
In general, the layer function � is to be determined. As
noted in [6], for small disturbances to the director and layer
structure we expect the difference between the director splay
deformation and the bending of the layers to be negligible.
We therefore combine the corresponding energy contributions
into a single term with the new elastic constant K (which
will be of the same order as K n

1 or K a
1 ) defined through the

approximation

1
2 K n

1 (∇ · n)2 + 1
2 K a

1 (∇ · a)2 ≈ 1
2 K (∇ · a)2. (2.18)

In an initial investigation, such as this, the viscous stress
t̃i j may be simplified so that calculations can be related to
results in the context of related nematic and smectic theories.
We therefore decide to neglect all ‘coupling’ viscosities κ1

to κ6, so that seven viscosity coefficients remain: α1 to α5,
τ1 and τ2. These are the principal nematic-like and smectic-
like viscosities. The incorporation of the κi viscosities will
be the subject of future more extensive work. The external
body force F and generalized external body force G will be
neglected. The bulk energy density wA, viscous stress t̃i j and
g̃i that will be considered in the current model are therefore,
using (2.14), (2.9) and (2.10), respectively,

wA = 1
2 K (∇ · a)2 + 1

2 B0( |∇�| + n · a − 2 )2

+ 1
2 B1{1 − (n · a)2}, (2.19)

t̃i j = α1(nk Akpn p)ni n j + α2 Ni n j + α3ni N j + α4 Ai j

+ α5(n j Aipn p + ni A j pn p) + (α2 + α3)ni A j pn p

+ τ1(ak Akpap)ai a j + τ2(ai A j pap + a j Aipap), (2.20)

g̃i = −γ1 Ni − γ2 Aipn p. (2.21)

A spatially homogeneous state under simple shear will now be
identified using the theory and approximations outlined above.
Disturbances to this homogeneous state will then form the core
of the work to be carried out in sections 3 and 4.

2.3. A spatially homogeneous state

The starting point for our investigation is the identification
of a spatially homogeneous alignment under a simple shear.
Following the approach of Auernhammer et al [6] and
Soddemann et al [8], it will assumed that, within such a
spatially homogeneous state, distortions to the smectic layer
alignment are negligible (this will, of course, not be the case
when we investigate disturbances to such a state). It is also
supposed that the director tilts relative to the smectic layer
normal but does not twist out of the xz plane in a first
approximation. Thus to determine a spatially homogeneous
state we set

� = z, φ = 0, θ = θ0, (2.22)

where θ0 is some constant angle. The form for the director n
and layer normal a are therefore given via (2.16) and (2.17) by

a = (0, 0, 1) and n = (sin θ0, 0, cos θ0). (2.23)

For the associated simple shear it is assumed that the velocity
has the form

v = (kz, 0, 0), (2.24)

where k > 0 is the shear rate, motivated by figure 1(b).
The constraints (2.1) and (2.2) are clearly satisfied and the
incompressibility condition (2.3) is fulfilled. It is also evident
that the permeation equation (2.13) is automatically satisfied.
In the absence of external body forces it is easily verified that
the linear momentum equations (2.6) reduce to p̃i = 0, so that
these equations are satisfied by setting p̃ = p + wA to an
arbitrary constant. The only remaining equations to be solved
arise from the angular momentum equations (2.12) which, in
this case, reduce to

− ∂wA

∂ni
+ g̃i = μni , (2.25)

where wA and g̃i are given by (2.19) and (2.20), respectively.
Calculations reveal that (2.25) becomes

[B1 cos θ0 + B0(1 − cos θ0)]ai + g̃i = μni , (2.26)

where

g̃1 = 1
2 k(γ1 − γ2) cos θ0, g̃2 = 0,

g̃3 = − 1
2 k(γ1 + γ2) sin θ0.

(2.27)

It is clear that for i = 2 equation (2.26) is satisfied identically.
The Lagrange multiplier μ can be eliminated by subtracting the
equations that result from multiplying the i = 1 equation by
cos θ0 and the i = 3 equation by sin θ0 to show that the angular
momentum equations finally reduce to the single equation

k

[
1 + λ

2
− λ sin2(θ0)

]
= B1

γ1
sin(θ0) cos(θ0)

+ B0

γ1
sin(θ0)(1 − cos(θ0)), (2.28)

where λ = −γ2/γ1 is the dimensionless flow-alignment
parameter (usually of order unity in many nematics [20]). Thus
we have generated a well-defined relationship between the
shear rate, k, and the tilt angle of the director, θ0; this is in
accord with the result determined by Auernhammer et al [6,
equation (38)]. The relation (2.28) is of crucial importance
when evaluating expressions below because it allows us to
interchange the roles of θ0 and k.

If we now consider (2.28) for small θ0 it is seen that

θ0 = γ1

B1
k

(
1 + λ

2

)
+ O(θ2

0 ), (2.29)

a result observed previously [6]. Equation (2.29), to lowest
order, gives an approximation for the tilt angle θ0 in terms of
the shear rate k, where θ0 is seen to depend linearly upon k.
Furthermore, this result is significant because it also shows that
initially the dependence of θ0 varies inversely with the coupling
term B1. As B1 increases, the director n attempts to align along
the direction of the layer normal a because the tilt angle θ0 will
correspondingly decrease. This is perhaps as expected since
an increase in the magnitude of the coupling constant should

4
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Figure 2. The dependence of θ0 upon the shear rate k plotted on a
log–log graph for the values of B0, B1, γ1 and γ2 in table 1. The solid
curve has been obtained from the nonlinear relation (2.28) and the
dashed curve is the linear approximation obtained from (2.29).

lead to a reduced separation in the angle between n and a. The
angle θ0 can be observed in a simple shear experiment at a
given shear rate k. If the viscosities γ1 and γ2 are known, or
can be estimated, then the relation (2.29) allows an estimate to
be made for the constant B1. If B0 is also known then (2.28)
provides a more accurate measurement of B1. Figure 2 shows
the dependence of θ0 upon k for the results in (2.28) and (2.29)
for the typical values of B0, B1, γ1 and γ2 stated in table 1
below.

We now go on to investigate the stability of the spatially
homogeneous state identified above in two cases. The first case
will assume that the flow induced by the shear does not couple
to any perturbations to the variables that model n and a while
the second case does suppose that the flow influences them and
vice versa.

3. Stationary instability

This section considers small disturbances to the spatially
homogeneous state (2.22) when perturbations are introduced
to the director tilt θ , director twist φ, smectic layer function
� and the induced shear flow v = (kz, 0, 0). Two cases
will be considered. In the first case, in section 3.1, we shall
ignore any coupling of this induced velocity to perturbations
of the first three of the above variables. This preliminary
approximation will be shown to be justified for a wide range of
values of the elastic constants and compression modulus. This
will be evident when we discuss the dynamic equations for the
second case in section 3.2 when coupling of the director and
layer normal to a perturbation of the velocity field will also be
included. It is well known that there can be intricate coupling
between flow and director alignment in nematic liquid crystals
and this motivates an investigation into the more complex
case of flow coupled to the perturbations of n and a. The
objective is to determine a critical director tilt θc (which is
related to a critical shear rate kc through (2.28)) and associated
critical wavenumber qc at which the spatially homogeneous
state identified in section 2 will exhibit the onset of undulating
smectic layers possessing an identifiable wavelength equal to

Table 1. Typical material parameters discussed in the text.

Parameter Typical value

d 10−5 m
qz π/d
K 5 × 10−12 N
B0 8.95 × 107 N m−2

B1 4 × 107 N m−2

λp 10−16 m2 Pa−1 s−1

α1 −0.0060 Pa s
α2 −0.0812 Pa s
α3 −0.0036 Pa s
α4, τ1, τ2 0.0652 Pa s
α5 0.0640 Pa s
γ1 = α3 − α2 0.0776 Pa s
γ2 = α2 + α3 −0.0848 Pa s
ρ 1000 kg m−3

2π/qc. The basic equations for the two cases will be derived
in this section and numerical calculations will be presented in
section 4.

3.1. Case 1: coupling to the velocity ignored

In the first instance, consider a perturbation to the spatially
homogeneous simple shear problem in section 2.3 without
any coupling to the induced flow, that is, the velocity for the
homogeneous alignment is unperturbed while θ0, φ and � are
perturbed. Consider perturbations to (2.22) of the form

� = z − û(y, z), φ = φ̂(y, z), θ = θ0 + θ̂ (y, z),
(3.1)

where θ̂ , û and φ̂ are small with v = (kz, 0, 0, ) where k
can be replaced when required by an equivalent expression in
θ0 via the relation (2.28). We shall refer to the set of three
variables θ̂ , û and φ̂ as the minimal set of variables. Partial
differentiation with respect to a spatial variable will be denoted
by a corresponding subscript preceded by a comma. We can
linearize in these variables to find that, to first order, with n
given via (2.16):

∇� = (0,−û,y, 1 − û,z), |∇�| = 1 − û,z, (3.2)

a = (0,−û,y, 1),

n = (sin θ0 + θ̂ cos θ0, φ̂ sin θ0, cos θ0 − θ̂ sin θ0),
(3.3)

and therefore the constraints (2.1) and (2.2) are satisfied to
first order. The incompressibility condition (2.3) remains valid
here also. As is common in similar problems [2, p 315], [6],
the linear momentum equations may be ignored when using
the minimal set of variables. In other words, neglecting
equations (2.6) is often considered a good approximation when
working with a minimal set of variables that are not coupled
to the flow. How accurate this approximation is will become
clear when a coupling of the minimal set to the flow is made
in section 3.2 (to be mathematically consistent, coupling to
the flow must be considered). The remaining equations to be
solved are therefore those arising from angular momentum in
equation (2.12) and the permeation equation (2.13), which we
now consider. This will result in three governing equations for
the perturbations.

5
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The g̃i contributions, from (2.21), are

g̃1 = 1
2 k(γ1 − γ2)(cos θ0 − θ̂ sin θ0), g̃2 = 0,

g̃3 = − 1
2 k(γ1 + γ2)(sin θ0 + θ̂ cos θ0).

(3.4)

Straightforward calculations show that (2.12) becomes

B1(n · a)ai − B0(|∇�| + n · a − 2)ai + g̃i = μni , (3.5)

which can be linearized to find that

B1(cos θ0 − θ̂ sin θ0)ai − B0(cos θ0

− θ̂ sin θ0 − 1 − û,z)ai + g̃i = μni . (3.6)

The Lagrange multiplier μ may be obtained by taking the
scalar product of (3.6) with n, defined in (3.3). However, in
this special case, it is seen that μ can be obtained directly from
the equation for i = 1. Working to first order reveals that

μ = 1
2 k(γ1 − γ2)(cot θ0 − θ̂cosec2θ0). (3.7)

Consequently, the i = 1 equation is satisfied for this value
of μ. Inserting μ into the equations for i = 2 results in the
equation

1

γ1
[B1 + B0(sec θ0 − 1)]û,y + 1

2
k(1 + λ)φ̂ = 0 (3.8)

recalling that λ = −γ2/γ1. Similarly, for i = 3 we have[
B1

γ1
sin θ0 cos θ0 + B0

γ1
sin θ0(1 − cos θ0)

− k

(
1 + λ

2
− λ sin2 θ0

)]
+

[
sin2 θ0

γ1
(B0 − B1)

+ kλ sin θ0 cos θ0+ k

2
(1 + λ) cot θ0

]
θ̂+ B0

γ1
û,z sin θ0 = 0.

(3.9)

The expression in the first pair of square brackets above is zero,
by the relation (2.28), and so this equation further reduces to[

sin2 θ0

γ1
(B0 − B1) + kλ sin θ0 cos θ0

+ k

2
(1 + λ) cot θ0

]
θ̂ + B0

γ1
û,z sin θ0 = 0. (3.10)

After some algebraic manipulation, this particular equation
can be shown to coincide with that of Auernhammer et al [6
equation (42)] if the relation (2.28) is employed to replace the
expression involving B1 cos2 θ0 in [6].

We now turn to the permeation equation. It is clear
that �̇ = 0 for v given by (2.24) and so the permeation
equation (2.13) becomes Ji,i = 0, assuming λp > 0. Notice
that ∂|∇�|/∂�,i = ai . For the energy density given by (2.19),
J defined by (2.7) is

Ji = −B0(|∇�| + (n · a) − 2)ai + 1

|∇�| [K (∇ · a),i

−B0(|∇�| + (n · a) − 2)ni + B1(n · a)ni

−K (∇ · a),kai ak + B0(|∇�|
+ (n · a) − 2)(n · a)ai − B1(n · a)2ai ]. (3.11)

Inserting the approximations (3.2) and (3.3) into this
expression, linearizing appropriately and then taking its
divergence and setting it equal to zero gives the permeation
equation

Ji,i = 0, (3.12)

where

Ji,i = B0θ̂,z sin θ0 + B1φ̂,y sin θ0 cos θ0

+ B0φ̂,y sin θ0(1 − cos θ0) − B0û,yy(1 − cos θ0)
2

+ B1û,yy cos2 θ0 + B0û,zz − K û,yyyy. (3.13)

The three equations (3.8), (3.10) and (3.12) are the
governing equations for the minimal set of variables. These
equations are very similar to those in [6], with some minor
differences: the results in [6] were derived from an alternative
linearized version of a different theory for the dynamics of
SmA. It is remarkable that the equations here only differ in
three terms, all nonlinear in θ0, namely the B0 term in (3.8)
and the B0 terms in the third and fourth expressions in (3.13);
in fact, the governing equations derived here coincide precisely
with those in [6] for small values of θ0. We consider periodic
ansatzes for the perturbed variables θ̂ , φ̂ and û of the form

{θ̂ , φ̂, û} = {
Aθ , Aφ, Au

}
ei(qy+qz z), (3.14)

where Aθ , Aφ and Au are small constants which govern the
amplitude of the corresponding perturbations; q and qz are
wavenumbers in the x and z directions, respectively (it will
be clear from the context that the notation in (3.14) will not
be confused with any indices used in Cartesian notation).
Inserting (3.14) into the aforementioned governing equations
gives a system of linear equations in the amplitudes, namely

iq

γ1
[B1 + B0(sec θ0 − 1)]Au + 1

2
k(1 + λ)Aφ = 0, (3.15)

[
sin2 θ0

γ1
(B0 − B1) + kλ sin θ0 cos θ0

+ k

2
(1 + λ) cot θ0

]
Aθ + iqz

γ1
B0 sin θ0 Au = 0, (3.16)

iqz B0 sin θ0 Aθ + iq sin θ0[B1 cos θ0 + B0(1 − cos θ0)]Aφ

− [K q4 − B0q2(1 − cos θ0)
2 + B1q2 cos2 θ0

+ B0q2
z ]Au = 0. (3.17)

We can write these equations as a matrix system with constant
coefficients in the form

Ax = 0, (3.18)

where A is the appropriate constant coefficient matrix and
x = [Aθ , Aφ, Au]T. A non-zero solution requires det(A) = 0.
For a given set of material parameters, including a presumed
wavenumber qz , det(A) is easily seen to be real, in which case
det(A) = 0 determines a curve in the qθ0 plane. The minimum
value for θ0 on this curve determines the actual critical angle
θc at which a non-zero perturbation will be available. This
critical angle is directly related to a critical shear rate kc that
can be calculated from the relation (2.28). There will be a
corresponding value for q at θc, which will be denoted by qc.
It is at the critical shear rate kc that the spatially homogeneous
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state given by (2.22)–(2.24) and (2.28) will then have a director
tilt at θc and begin to exhibit the onset of an undulation of the
smectic layers along the y direction with wavelength given by
2π/qc. Calculations for the identification of θc and qc will
be made in section 4 below after we have derived a set of
model equations for the same problem with coupling to flow
included. The dependence of these critical parameters upon
various material parameters will be investigated numerically.
Calculations will be based on a set of representative values
listed in table 1 and the numerical results for the minimal set
of variables will be presented in parallel with those for a full
set of variables. We will then be in a position to compare the
results obtained from the minimal set with those obtained from
a set of variables that include coupling to the velocity.

3.2. Case 2: coupling to the velocity

Having examined the simple shear problem without coupling
to the velocity and determined a set of three equations for the
minimal set of variables in case 1, we now turn our attention
to the coupling with the velocity. This will enable us to make
a comparison between the results that incorporate a perturbed
flow with those that do not. As before, the form of the
perturbations will be given by (3.1), the key difference now
being the introduction of a perturbation to the shear flow (2.24)
by considering

v = (kz, 0, 0) + (vx(y, z), vy(y, z), vz(y, z)), (3.19)

where vx , vy and vz are small. There will be seven governing
equations: one from the incompressibility condition, two from
the angular momentum equations, one from the permeation
equation and three from the linear momentum equations.

The incompressibility condition (2.3) results in the
equation

vy,y + vz,z = 0. (3.20)

The equations arising from angular momentum are again
given by equation (3.6), except that in this case a and
n are given by (3.3) and the g̃i contributions are given
via (2.21), (3.1), (3.3) and (3.19) by

g̃1 = 1
2 (γ1 − γ2)[(k + vx,z ) cos θ0 − kθ̂ sin θ0], (3.21)

g̃2 = − 1
2 (γ1 + γ2)(vx,y sin θ0 + vz,y cos θ0)

+ 1
2 (γ1 − γ2)vy,z cos θ0, (3.22)

g̃3 = − 1
2 (γ1 + γ2)[(k + vx,z ) sin θ0 + kθ̂ cos θ0]

− γ2vz,z cos θ0. (3.23)

Notice that here n · a = cos θ0 − θ̂ sin θ0, as in the first case
above. As before, the Lagrange multiplier μ in this case can be
determined from the i = 1 equation in (3.6) to reveal that, to
first order in the variables,

μ = 1
2 (γ1 − γ2)[(k + vx,z ) cot θ0 − k θ̂ cosec2θ0]. (3.24)

Putting this value for μ into equation (3.6) and us-
ing (3.3), (3.22) and (3.23) gives, for the i = 2 equation,

[B0(sec θ0 − 1) + B1] û y

γ1
+ 1

2
(1 − λ)(vz,y + vx,y tan θ0)

+ 1
2 (1 + λ)(kφ̂ − vy,z) = 0, (3.25)

while the i = 3 equation, after an appropriate use of (2.28) to
replace the B1 cos2 θ0 contribution, gives

θ̂

[
2

γ1
(B0 − B1) sin2 θ0 + 2kλ cos θ0 sin θ0

+ k(1 + λ) cot θ0

]
+ 2

B0

γ1
û,z sin θ0

− vx,z [1 + λ cos(2θ0)] + 2λvz,z cos θ0 sin θ0 = 0. (3.26)

For the form of � given in (3.1), �̇ = vz to first order. The
divergence of J remains as stated in equation (3.13), because
it does not contain contributions from the flow. Thus the
linearized permeation equation (2.13) is

vz + λp Ji,i = 0, (3.27)

where Ji,i is given by (3.13).
It only remains to consider the linear momentum

equations (2.6) in the absence of body forces. We shall assume
that p̃ is a function of y and z only, in common with the
assumed dependences for the other variables in the problem.
The three equations in (2.6) are then, to first order,

ρvzk = t̃1 j, j , (3.28)

0 = − p̃,y + g̃ jn j,2 + t̃2 j, j , (3.29)

0 = − p̃,z + g̃ jn j,3 + t̃3 j, j + Ji,i , (3.30)

where the components of t̃i j are given by (2.20), Ji,i is given
by (3.13) and the g̃i are as stated in (3.21) to (3.23); it follows
that

g̃ j n j,2 = 1
2 k[γ1 − γ2 cos(2θ0)]θ̂,y,

g̃ j n j,3 = 1
2 k[γ1 − γ2 cos(2θ0)]θ̂,z,

(3.31)

and we note for calculations that, when linearized in the
variables, ṅ = 0 and

N1 = 1
2 [kθ̂ sin θ0 − (k + vx,z ) cos θ0], (3.32)

N2 = 1
2 [vx,y sin θ0 + (vz,y − vy,z) cos θ0], (3.33)

N3 = 1
2 [kθ̂ cos θ0 + (k + vx,z ) sin θ0]. (3.34)

The seven governing equations for our problem are therefore
given by equations (3.20) and (3.25)–(3.30).

We now progress as in the first case by introducing suitable
ansatzes and set

{θ̂ , φ̂, û, vx , vy, vz, p̃} = {Aθ , Aφ, Au, Avx , Avy , Avz , A p}
× ei(qy+qzz), (3.35)

where Aθ , Aφ , Au , Avx , Avy , Avz and A p are small amplitudes,
with the aim of constructing a matrix system of seven equations
in these unknown constants. Inserting (3.35) into the relevant
seven equations (3.20) and (3.25)–(3.30) and linearizing gives
(after some straightforward calculations), respectively:

q Avy + qz Avz = 0, (3.36)

k(1 + λ)Aφ + 2
iq

γ1
[B0(sec θ0 − 1) + B1]Au + iq(1 − λ)

× tan θ0 Avx − iqz(1 + λ)Avy + iq(1 − λ)Avz = 0,

(3.37)

7



J. Phys.: Condens. Matter 21 (2009) 465101 I W Stewart and F Stewart[
2

γ1
(B0 − B1) sin2 θ0+2kλ cos θ0 sin θ0+k(1+λ) cot θ0

]
Aθ

+ 2iqz
B0

γ1
sin θ0 Au − iqz[1 + λ cos(2θ0)]Avx

+ 2iqzλ cos θ0 sin θ0 Avz = 0. (3.38)

iqzλp B0 sin θ0 Aθ + iqλp sin θ0[B1 cos θ0

+ B0(1 − cos θ0)]Aφ − λp[K q4 − B0q2(1 − cos θ0)
2

+ B1q2cos2θ0 + B0q2
z ]Au + Avz = 0, (3.39)

kiqz[2γ2 sin(2θ0) + α1 sin(4θ0)]Aθ

+ kiq sin θ0 cos θ0[α5 − α2 + 2α1 sin2 θ0]Aφ

+ τ2kq2 Au − [(α2 + 2α3)(q
2 + q2

z ) sin2 θ0

− α2q2
z cos2 θ0 + τ2q2

z + α4(q
2 + q2

z )

+ 2α1q2
z sin2 θ0 cos2 θ0 + α5(q

2
z + q2 sin2 θ0)]Avx

− qqz(α2 + α5) sin θ0 cos θ0 Avy

− (2ρk + [(2α3 + α2 + α5)q
2

+ 2(γ2 + α5 + α1 cos2 θ0)q
2
z ] sin θ0 cos θ0)Avz = 0,

(3.40)

kiq[γ1 − γ2 cos(2θ0)]Aθ

+ kiqz(2α1 cos2 θ0 + α2 + 2α3 + α5) sin2 θ0 Aφ

− (α2 + α5)qqz sin θ0 cos θ0 Avx

+ [q2
z ((α2 − α5) cos2 θ0 − τ2 − α4) − 2α4q2]Avy

− qqz[(α2 + α5) cos2 θ0 + τ2 + α4]Avz − 2iq A p = 0,

(3.41)

iqz[2B0 sin θ0 + k(γ1 + (γ2 + 2α5) cos(2θ0))

+ 2kα1 cos2 θ0(4 cos2 θ0 − 3)]Aθ

+ iq sin θ0[2B1 cos θ0 + 2B0(1 − cos θ0)

+ k(2α1 cos2 θ0 + α2 + α5) sin θ0]Aφ

− 2[B1q2 cos2 θ0 − B0q2(1 − cos θ0)
2

+ B0q2
z + K q4]Au − sin θ0 cos θ0

× [2(α1 cos2 θ0 + γ2 + α5)q
2
z

+ (α2 + 2α3 + α5)q
2]Avx

− qqz[(α2 + α5) cos2 θ0 + α4 + τ2]Avy

− [(α2 + 2α3)q
2 cos2 θ0 + α4(q

2 + 2q2
z )

+ 2(α1 cos4 θ0 + τ1)q
2
z + (α5 cos2 θ0 + τ2)

× (q2 + 4q2
z ) + 2γ2q2

z cos2 θ0]Avz − 2iqz A p = 0. (3.42)

As in case 1, we can write equations (3.36)–(3.42) as a
matrix system of the form given in (3.18) where, in this case,
A is the relevant matrix of constant coefficients and x =
[Aθ , Aφ, Au, Avx , Avy , Avz , A p]T. The comments concerning
the minimal set of variables after equation (3.18) are equally
valid here: we need to determine the minimum qc and θc that
can be found from the requirement for non-zero solutions that
det(A) = 0, for a given set of material parameters. In the
minimal set case we have a 3×3 determinant to consider while
in the coupled flow case it will be a 7 × 7 determinant.

4. Solutions

The main results will involve the identification of a critical tilt
angle at the onset of an instability to the spatially homogeneous
state (2.28) that is directly related to the applied shear rate k,
as has been discussed above in section 2.3 for figure 2. The
two sets of equations given by (3.15)–(3.17), for the minimal
case without coupling to the velocity field, and (3.36)–(3.42),
for the case with coupling to flow, will be used to produce
graphs that highlight the dependence of the critical parameters
upon various material parameters for the problem outlined
above. The parameters and typical values used when solving
our equations are stated in table 1. We have chosen a common
value for the sample depth and set d = 10−5 m. The elastic
constant K and viscosities α1 to α5 are based on representative
values for the nematic liquid crystal 5CB while B0 is a typical
value for the smectic layer compression constant [2]. The
coupling constant B1 has been chosen in line with the estimates
by Ribotta and Durand [3] (B1 � B0) for SmA and the
permeation constant λp has been estimated by Kléman and
Lavrentovich [18 p 328] (early measurements for λp by Chan
and Webb [21] for lamellar bilayers were substantially smaller
than this (10−33 m2 Pa−1 s−1): the value quoted in table 1
is in agreement with the experimental evidence reported by
Krüger [22], as considered in [18]).

As discussed above, each of the aforementioned
systems of linear equations can be written as a matrix
system with constant coefficients in the form Ax =
0, where A is the appropriate coefficient matrix and
x = [Aθ , Aφ, Au]T for the minimal variables case and
x = [Aθ , Aφ, Au, Avx , Avy , Avz , A p]T for the case with
perturbation to the velocity field included. Each system has
non-zero solutions if and only if det(A) = 0. In each case,
this requirement determines a curve in the qθ0 plane whenever
the parameters from table 1 are inserted into the components
of the matrix A; recall that θ0 can always be related back to
the applied shear rate k via the relation (2.28). The resulting
curves for det(A) = 0 are shown in figure 3 for a range of
values in q and θ0: the solid line represents the curve for the
minimal set of three variables while the dashed line is that for
the case with the full set of seven variables when coupling
of the perturbations to the velocity field is included. These
curves and subsequent results have been obtained using data
calculated from the software package Maple [23]. From the
curves in figure 3 it is readily seen that there is a minimum
value of θ0, written as the critical value θc, which occurs at a
corresponding critical wavenumber q = qc. At the onset of
the instability to the stationary state the director will tilt at an
angle θc and the layers will exhibit a periodic structure in the
y direction with wavelength 2π/qc. The corresponding critical
shear rate kc at which the onset of the instability occurs can be
determined from (2.28) or the graph plotted in figure 2. In this
instance we have

minimal set: qc = 3.6431 × 107 m−1,

θc = 0.0174 rad, kc = 8.5753 × 106 s−1,
(4.1)

coupling to velocity: qc = 3.6408 × 107 m−1,

θc = 0.0164 rad, kc = 8.0821 × 106 s−1.
(4.2)

8
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Figure 3. Log–log plots of the curves det(A(q, θ0)) = 0 when the
parameters from table 1 are inserted into the coefficient matrix A.
The solid line represents the curve for the minimal set of variables
while the dashed line is for the case when coupling to the velocity
field is included. The critical tilt angle for the director, θc, is the
minimum value of θ0, achieved at a corresponding critical
wavenumber qc.

It is seen that coupling to the velocity does slightly reduce the
values of qc, θc and kc; the influence of flow, in this particular
example, does not dramatically change the critical values. We
remark that high shear rates such as these are not uncommon
in shear flow experiments in molecular dynamics models [24].
Figure 3 essentially shows how to obtain the critical values
qc and θc for a given set of material parameters. It is this
procedure that we now adopt as we investigate how the values
of θc, qc and kc change as various parameters vary: as one
particular parameter varies, we can calculate the corresponding
critical values.

In figure 4 we suppose that the parameter values are as
stated in table 1 except for B0 and explore the effect that
varying B0 has on the critical tilt angle of the director, the
critical wavenumber and the critical shear rate, plotted on log–
log graphs. The dependence of θc upon the layer compression
constant B0 is shown in figure 4(a). This figure shows quite
different results for small values of B0 which depend on
whether or not coupling to the velocity field is included. The
influence of flow is seen to be substantial when B0 is relatively
smaller than B1 and the difference between the results for the
minimal and full sets of variables is greatest when B0 is small.
However, as B0 approaches the value of B1 = 4 × 107 N m−2

the results begin to coincide. Despite B1 � B0 being a
common assumption [3], if it is, nevertheless, anticipated that
B0 is smaller than B1 then coupling of the perturbations to
the velocity may be required for a more accurate model. The
results in figure 4(b) show the corresponding dependence of qc

upon B0. The difference between the values of qc calculated
with and without coupling to the flow are negligible. It may be
of interest to note from figure 4(b) that the linear plots show
qc(B0) satisfies a power law relation given by, in this particular
case, qc = a Bb

0 where a ≈ 3.74 × 105 and b ≈ 0.25.
The origin of this power law behaviour is discussed in more

Figure 4. (a) Plots of θc as a function of B0 plotted on a log–log
graph. For high magnitudes of B0 the curves almost coincide. The
curves separate for low values of B0. (b) Plots of the critical
wavenumber qc as a function of B0. The curves are virtually
coincident. (c) The critical shear rate kc as a function of B0,
calculated via (3.28) and the data for θc in (a). All remaining material
parameters have been set to those stated in table 1.

generality in section 5 via the results in equation (5.1), which
lead to the approximation stated in equation (5.3) that happens
to be in line with the above numerically derived result. The
corresponding critical shear rate kc, shown in figure 4(c), has
been calculated from the data in figure 4(a) for θc and the
expression for the shear rate given by equation (3.28). Recall
that the onset of the instability will occur at the critical shear
rate kc. The critical tilt angle and the critical shear rate are
seen to be generally reduced in magnitude if coupling to the
velocity is included compared to the case for the minimal set
of variables.

The dependence of θc and qc upon B1 can be examined
similarly when the remaining parameters are fixed at the values
stated in table 1. The results are shown in figure 5. In
figure 5(a), the effect upon θc of coupling to the velocity
becomes more prominent as B1 increases: in general, θc

decreases as B1 increases when coupling to the velocity is
included, in contrast to a slight increase in θc for the minimal
set of material parameters. The corresponding values for qc are
displayed in figure 5(b). For both sets of variables, the curves
for qc are close for B1 � 107 N m−2, and begin to separate
for values of B1 greater than this; when coupled to the velocity
for large values of B1, qc is lower than that obtained for the
minimal set of variables. The horizontal axes in figures 5(a)
and (b) are on a log scale. It is seen in figure 5(c) (with unscaled
axes) that the critical shear rate kc is linearly increasing with B1

9
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Figure 5. The horizontal axes in (a) and (b) are on a log scale. (a)
Plots of θc as a function of B1. The curves separate for high values of
B1. (b) Plots of the critical wavenumber qc as a function of B1. The
curves separate as B1 increases. (c) The critical shear rate kc,
calculated via (3.28) and the data for θc in (a). The remaining
material parameters are as stated in table 1.

for both the minimal and full sets of variables. Moreover, the
critical shear rate when coupling to the velocity is included is
always lower than the corresponding shear rate for the minimal
set. It is known from the approximation in (2.29) that, for
small angles θc, kc is approximately linear in B1. For the data
given by table 1, the linear dependences can be approximated
from the numerical data to find that kc = a + bB1 where
a ≈ −8.46 × 104, b ≈ 0.222 for the minimal set of variables
and a ≈ 5.16×105, b ≈ 0.187 when coupling to the velocity is
included. The behaviour of kc here is distinctly different from
that shown in figure 4(c) for varying B0.

By a similar approach we now consider the dependence
of the critical values θc, qc and kc on the bending modulus
of the layers K while the other material parameters remain
as given in table 1. From figure 6(a), it is clear that, as K
increases, the critical tilt angle θc of the director increases for
both sets of variables. Although both cases demonstrate linear
behaviour on log–log graphs, the inclusion of flow leads to a
slightly lower tilt angle in comparison to the minimal variables
case. It is also seen in figure 6(b) that, as K increases, the
critical wavenumber qc decreases with the curves for both sets
of variables being almost indistinguishable. Figure 6(c) shows
that the critical shear rate kc is linearly increasing with K
(on a log–log graph) for both the minimal and full sets of
variables; the value of kc, obtained from (3.28) and the data
for θc in figure 6(a), is always slightly lower than that obtained

Figure 6. (a) Plots of θc as a function of K plotted on a log–log
graph. (b) Plots of qc as a function of K . (c) The dependence upon K
of the critical shear rate kc. The remaining material parameters are as
stated in table 1.

Table 2. The approximate power law behaviour for the critical
parameters shown in figure 6. The remaining material constants are
as stated in table 1.

Minimal set Coupling to velocity

a b a b

θc = aK b 11.6961 0.2498 10.9595 0.2500
qc = aK b 5.4359 × 104 −0.2501 5.5698 × 104 −0.2491
kc = aK b 5.9328 × 109 0.2510 5.5184 × 109 0.2508

for the minimal set of variables when coupling to the velocity
is included. All of the plots in figure 6 are linear on log–
log graphs and so they can be approximated by power laws.
Table 2 shows the results for these approximations, obtained
via the software package Origin 8 [25]. The origin of these
power laws can be determined under the assumption that θc is
small at criticality. The general approximations discussed in
section 5 below at equation (5.1) reveal the material parameter
dependences of θc, qc and kc. The results stated in (5.2) are in
keeping with those presented in table 2.

The permeation constant, λp, only has an influence when
coupling to the velocity is included. Graphs of the dependence
of θc, qc and kc on λp are shown in figure 7, where the
horizontal axes are on a log scale. Although we have set
λp = 10−16 m2 Pa−1 s−1 for all of the preceding calculations,
the three key critical parameters are most sensitive to change
when λp varies around 10−14 m2 Pa−1 s−1. As λp increases,
both θc and kc increase as shown in figures 7(a) and (c)
while the critical wavenumber at the onset of the instability
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Figure 7. The horizontal axes are on a log scale. (a) A plot of θc as a
function of λp with the other material parameters as stated in table 1.
(b) qc as a function of λp. (c) The dependence on λp of the critical
shear rate kc for the onset of instability. The remaining material
parameters are as stated in table 1.

remains constant close to 3.64 × 107 m−1 except over the
region approximately given by 5 × 10−17 m2 Pa−1 s−1 < λp <

5 × 10−11 m2 Pa−1 s−1; this region also happens to be where
θc and kc vary most as λp changes. For the two extreme
possibilities of small and large magnitude permeation, θc, qc

and kc are close to constant values: for λp small and the other
material parameters given in table 1, θc ≈ 0.0164 rad and
kc ≈ 8.0784 × 106 s−1, and for very much large values of λp,
θc ≈ 0.0191 rad and kc ≈ 9.4163 × 106 s−1. As mentioned in
the opening paragraph to this section, there are widely different
values reported for λp for different lamellar systems and that it
may be very much smaller than the range indicated here for
lamellar bilayers [21]. Nevertheless, the range of values for λp

used here is known to be within those reported and estimated
for SmA liquid crystals [1, 18].

5. Conclusions and discussion

The decoupling of the director n from the layer normal a has
been highly significant in motivating the work contained in
this paper. The common Oseen constraint for smectics, that
is, ∇ × a = 0, has also not been imposed as a necessary
requirement in the modelling of the dynamics of SmA liquid
crystals. We have examined the onset of an instability induced
by a simple shear in a planar aligned sample of SmA and the
prime concern has been the identification of critical values at
the start of the instability. For given material parameters, the

critical shear rate, kc, at which the beginning of the instability
occurs, has been determined from the corresponding critical
tilt angle, θc, of the director; a general technique for finding
the associated wavenumber, qc, has also been developed.
The results presented above have been based on two sets of
model dynamic equations that consider the perturbation to a
homogeneous state given by equation (2.22) and have been
derived as special cases of a more general theory [12]. A
useful nonlinear relation between the shear rate and the director
tilt angle was identified in equation (2.28) for a spatially
homogeneous state. A linear approximation to this relation
was given in (2.29) and a comparison between the nonlinear
and linear versions was made in figure 2. When a critical
tilt angle has been identified then this relation enables a
corresponding critical shear rate to be evaluated directly. It
also means that kc can be replaced in terms of θc and vice
versa at criticality. The first set of equations is based on
a minimal set of three perturbation variables, namely θ̂ , φ̂

and û as given by (3.14). The second set consists of seven
perturbation variables, labelled θ̂ , φ̂, û, vx , vy , vz and p̃, as
introduced in (3.35). The minimal set ignored coupling of
the perturbations to the velocity while the second set of full
variables allowed a coupling to the velocity; considering both
sets of variables enables a comparison to be made so that
the influence of flow can be investigated. In many simplified
dynamic problems, any possible coupling to the velocity is
often neglected and therefore the qualitative results presented
here will, to some extent, provide a guide as to whether
or not it is reasonable to ignore coupling to the velocity in
approximations to more complex problems, especially when
some of the material parameters are known from experimental
data.

The two sets of dynamic equations led to linearized
systems in the unknown small amplitudes of the perturbation
variables and the requirement for non-zero solutions forced
the associated determinant of the matrix of coefficients to be
zero, which is the criterion discussed in section 3 for the
determination of the critical parameters via determinant curves
such as those shown in figure 3. The techniques for obtaining
critical values for θc and kc from such curves were discussed
in detail and exploited in section 4. It was first noted in
section 2.3 that the results for a spatially homogeneous state
under an imposed simple shear were in accord with those
obtained from an alternative dynamic theory for SmA [6].
Furthermore, the dynamic equations given by (3.8), (3.10)
and (3.12) for the minimal set of variables are, when linearized,
almost coincident with those in [6] and are actually identical
for small values of θ0, as highlighted after equation (3.13).
Nevertheless, when coupling to the velocity was included
in section 3.2 the dynamic equations differed from those
in [6] because of the form of the viscous terms introduced at
equations (2.20) and (2.21). Further, a non-dimensionalized
set of equations was used in [6] whereas we have retained
dimensions so that a direct comparison with experimental
data can be made. The reduced number of viscosities in
expressions (2.20) and (2.21) have been selected because they
are considered to be representative of the minimum collection
of viscosity coefficients that can be adopted in order to
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incorporate the basic nematic-like and smectic-like behaviour,
largely motivated by the SmA model reviewed in [1]. The
reader is referred to the paper by Osipov et al [26] for a
more detailed general discussion of viscosity coefficients in
smectics.

The main results have been presented in section 4 for the
typical material parameters listed in table 1. These tabulated
parameters are representative values which allow qualitative
and quantitative results to be generated. Figure 4 shows
the dependence of the critical values as the smectic layer
compression constant B0 varies while other parameters remain
fixed as given in table 1. The differences between the minimal
set solutions and those when coupling to flow is included are
most evident for small magnitudes of B0. When the layer
compression constant is small then the influence of flow is
substantial compared to the situation in the presumed absence
of flow and therefore these results indicate that the inclusion of
flow will generally be of importance and cannot be neglected
when searching for critical shear rates kc and tilt angles θc

when B0 is relatively smaller than the director and layer normal
coupling constant B1. It remains to be seen how important
these observations are, especially given the early conjecture
by Ribotta and Durand [3], mentioned in section 4, that the
magnitude of B1 may well be less than that of B0 for SmA. This
then led naturally to an investigation of the dependence of the
critical values on B1 with the results shown in figure 5. For B1

relatively smaller than B0 (which was set at 8.95 × 107 N m−2

in the figure) the solutions for the minimal set of variables
are very close to those for the full set of variables. Therefore
if B1 � B0 then using the minimal set of variables may be
sufficient in modelling critical shear effects. The discrepancies
between the curves shown in figure 5 are more pronounced
as B1 increases; all three critical values obtained from the
minimal set are reduced in magnitude when coupling to the
velocity is included for high values of B1.

The results in figure 6 show the critical values as functions
of the elastic constant K , the other parameters being fixed at
the values in table 1. The apparent linear dependences on K
shown on log–log graphs allowed us to approximate θc, qc

and kc in terms of power laws; the numerical coefficients have
been tabulated in table 2 where all the critical parameters are
approximately proportional to K b where b is negative for qc

and positive for both θc and kc. These power laws may be quite
general in form, in which case the sign of b is an important
signature of the expected behaviour. It was also noted that
when coupling to the velocity was included the values of θc

and kc in figures 6(a) and (c) were always slightly lower than
those obtained for the minimal set of variables.

It is possible to determine the origin of the power laws
that appear in figures 4(b) and 6. For example, if θ0 is
presumed small then the determinant of the matrix A that
appears in (3.18) can be expanded to fourth order in θ0 to
obtain an expansion in the form det(A) = C1θ

2
0 + C2θ

4
0 , where

C1 and C2 are dependent upon q and the remaining material
parameters. This expansion has to be at least fourth order in
order to eliminate θ0 = θc ≡ 0 as the only solution; given the
proximity of the results in the figures for the two coefficient
matrices A that arise from the ‘minimal set’ and ‘coupling to

velocity’ cases, we need only consider the minimal set to gain
some insight into the problem. The aforementioned expansion
can be solved explicitly for a unique positive solution θ0. This
expression for θ0 can then be differentiated with respect to q in
order to find the value q = qc at which θ0 is minimized; the
resultant qc can then be expanded as a power series in any of
the relevant material parameters such as B0 and K . Once this
has been accomplished, qc may be inserted into the expression
for θ0 to obtain an approximation for θc. It is then also possible
to obtain a corresponding expression for the critical shear rate
kc via the approximation (2.29). It is found that (recall that
α2 < 0)

θc � 2(B0K )
1
4
√−α2qz√

2B1α3 − B0α2
, qc � √

qz

(
B0

K

) 1
4

,

kc � − B1

α2
θc.

(5.1)

For the appropriate data in table 1, the relevant dependences on
K can be calculated using (5.1) to reveal that

θc = 11.76K
1
4 , qc = 5.45 × 104K − 1

4 ,

kc = 5.79 × 109 K
1
4 .

(5.2)

These results are in reasonably close agreement with those
presented in table 2 for the data presented in figure 6.
The approximate formulae in (5.1) show the key parameters
that influence the onset of a stationary instability to the
spatially homogeneous state discussed in section 2.3. Similar
calculations using (5.1) show that

qc � 3.75 × 105 B
1
4

0 , (5.3)

again in accord with the data presented in figure 4(b) that was
discussed in section 4.

The influence of permeation upon the critical values
has been demonstrated in figure 7. This can only happen
when there is coupling to the flow. A wide range of values
for the permeation constant λp have been reported in the
literature for different types of lamellar materials, ranging from
10−33 m2 Pa−1 s−1 [21] to λp = 10−16 m2 Pa−1 s−1 [18, 22]
and this has motivated the investigation into the role of λp as
it varies. The results in figure 7 show that for high and low
magnitudes of λp the critical values remain virtually constant.
However, as seen in the figure, the system is most sensitive to
variations in λp when it takes values in the range 5 × 10−17–
5×10−11 m2 Pa−1 s−1. Some experimental results by Lutti and
Callaghan [27] on related systems of bilayers have indicated
that permeation, which is a diffusion of material perpendicular
to the smectic layers, may be reduced under the application of
a weak shear. Moreover, the results in [27] for certain lamellar
phases have demonstrated that smectic layer undulations can
be suppressed by applying a weak shear. It may be possible
to use the dynamic theory outlined in section 2.1 to model the
dynamics of shear-induced undulations for shear rates above kc

and to compare theoretical predictions with the data presented
in [27].
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A more intricate nonlinear analysis will be worth
investigating for shear rates that are very much greater than
the critical shear rate kc discussed above. The theoretical
results by Wunenburger et al [28] on shear in SmA make
some comparisons with experimental data for high shear rates.
The theory and model discussed above may be developed and
extended to look further into aspects of flow induced by high
shear rates. Future work will also look at the inclusion of more
viscosity coefficients, namely the coupling viscosities κ1 to κ6.
A viscosity coefficient similar to κ1 has appeared in dynamic
theories for SmC liquid crystals (for example, the viscosity τ1

introduced in [2, 16] and the coefficient γ3 in [15]) and it is this
particular viscosity that will be the focus of attention because
it distinguishes the dynamic contribution g̃i from its nematic
analogue [2]. The remaining viscosities κ2 to κ6 that appear in
the viscous stress t̃i j in equation (2.9) have some analogous
representations in SmC [2, 16] and reflect the coupling of
a and n to the dynamics; for a brief discussion on related
viscosities in SmC the reader is referred to [2, section 6.3.2].
The influence of such viscosities remains an area of interest for
both SmC and SmA liquid crystals.
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